
Towards an AQM Evaluation Testbed with P4 and DPDK
Sándor Laki

ELTE Eötvös Loránd University
Budapest, Hungary
lakis@inf.elte.hu

Péter Vörös
ELTE Eötvös Loránd University

Budapest, Hungary
vopraai@inf.elte.hu

Ferenc Fejes
ELTE Eötvös Loránd University

Budapest, Hungary
fejes@inf.elte.hu

ABSTRACT
Active Queue Management (AQM) addresses the problem arising
from using unnecessarily large, unmanaged buffers and thus it aims
at improving network and application performance. AQM meth-
ods introduce different drop policies to proactively drop packets
according to queue states and parameters. Though we are living in
an AQM renaissance, comprehensive methodology and framework
for performance evaluation under realistic traffic loads are still
missing. With the advent of P4, description, validation and eval-
uation of AQM algorithms in a generic framework have become
possible since the different drop policies applied by these methods
can be implemented in ingress and/or egress control blocks of a
P4 program. In this demo paper, we propose an AQM evaluation
framework in which AQM algorithms described in P4 language can
be executed and evaluated with a modified version of our DPDK-
based P4 compiler called T4P4S in a testbed with realistic traffic
mixes. The framework is demonstrated with some selected AQM
algorithms in a network with a 5 Gbps bottleneck.

CCS CONCEPTS
• Networks → Packet scheduling; Network performance
evaluation; Programmable networks.

KEYWORDS
AQM, Drop policy, Congestion Control, P4, Evaluation
ACM Reference Format:
Sándor Laki, Péter Vörös, and Ferenc Fejes. 2019. Towards an AQM Evalu-
ation Testbed with P4 and DPDK. In SIGCOMM ’19: ACM SIGCOMM 2019
Conference Posters and Demos, August 19–23, 2019, Beijing, China. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3342280.3342340

1 INTRODUCTION
Active Queue Management (AQM) has gained attention in the re-
cent years, since handling of overly large buffers and thus large
queueing delays, known as the bufferbloat problem is needed in
future access networks. In addition to classical AQM schemes [2, 3]
like RED, WRED, delay-aware approaches like CoDel, PI controller-
based approaches like PIE and PI2 and many others have also been
proposed in the past decade. Active Queue Management (AQM)
addresses the problem arising from using unnecessarily large and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’19, August 19–23, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6886-5/19/08. . . $15.00
https://doi.org/10.1145/3342280.3342340

unmanaged buffers and thus it aims at improving network and
application performance. These methods introduce different drop
policies to proactively drop packets according to queue states and
parameters. The drop policies of AQMmethods can be implemented
in the ingress and/or egress control blocks of a P4 program [1], as-
suming that required queue states are exposed to the P4 program
(e.g. though metadata fields). Because of the number of congestion
control algorithms, novel transport protocols like QUIC and further
techniques like packet pacing applied in nowadays networks the
evaluation of AQM algorithms has become very challenging. With
the advent of P4 [1], description of different AQM algorithms in a
generic way have become possible.

In this demo paper, we present the first steps towards a compre-
hensive AQM evaluation framework that relies on our DPDK-based
P4 compiler and software switch called T4P4S [4] and traffic gener-
ator containers using iperf. The proposed framework can be used
to generate responsive and unresponsive traffic with a wide range
of congestion control algorithms and network settings (settings
that are supported by the current Linux kernel). To support AQM
evaluation the T4P4S compiler and software switch have been mod-
ified. Its run-to-completion execution model has been replaced by
splitting the pipeline into two parts: 1) from parsing to ingress
control and 2) egress control to deparsing. The two parts can be
assigned to different CPU cores interconnected with a queue (ring
buffer). In addition, the well-known v1model architecture of P4-16
have been extended with new standard metadata fields for provid-
ing information on the queue state: instantaneous queue latency,
average queue size, current time. This meta information needs for
the drop decisions of various AQM algorithms.

2 DEMO SCENARIOS
In the demo, we present three different scenarios, using the testbed
depicted in Fig. 1. It consists of two separate machines (AMD Ryzen
Threadripper 1900X 8C 3.8GHz, 128GB RAM): TrafficGenerator
(TG node) and P4Switch (P4 node). Each one is equipped with a
1 Gbps NIC for management purposes and a dual 10 Gbps NIC
(Intel 82599ES) for the measurements. On both machines, the two
10 Gbps interfaces are used with Intel DPDK drivers. The test traffic
is generated by the iperf3 tool whose server and client components
run in two docker containers on TG node. These containers are
directly linked to the 10 Gbps physical interfaces and emulate the
traffic source and sink nodes. In the sink container, a 5 ms propaga-
tion delay is emulated (Linux tc command) in the uplink direction.
Though iperf can generate both unresponsive UDP and responsive
TCP traffic, in this demo we only focus on responsive TCP flows.
The number of active flows are varied from 10 to 40 (other settings
are possible) while the applied congestion control algorithm can
also be configured. In the demo we show results with Reno, Vegas
and Cubic, but others like DCTCP with ECN marking or BBR can

https://doi.org/10.1145/3342280.3342340
https://doi.org/10.1145/3342280.3342340

SIGCOMM ’19, August 19–23, 2019, Beijing, China Sándor Laki, Péter Vörös, and Ferenc Fejes

Figure 1: Demo architecture

also be examined with ease. The P4 node uses our modified T4P4S
compiler and execute the compiled P4 AQM program.

For demonstration, we prepared two selected AQM programs
(RED and PIE) and a simple FIFO as reference in P4-16 language
using the extended v1model architecture1. The compiled T4P4S
switch applies a rate limiter on the outgoing link in uplink direction
(on Core 2) to emulate a bottleneck of 5 Gbps. Note that this pa-
rameter can be varied in the framework. As mentioned previously,
P4 node applies the given AQM method in the uplink direction
and a simple forwarding on the reverse direction (no bottleneck).
The queue statistics are collected and stored in every one second
continuously. All the performance metrics provided by the T4P4S
core switch program and the throughput values of flows given by
iperf are visualized in real-time on a dashboard. In the demo we
cover three scenarios: a reference FIFO, PIE AQM and RED AQM.
In all cases, the maximum buffer size is 16384 packets. Accordingly,
we distinguish two kind of drops: ingress drop caused by the drop
policy of the applied AQM method and drop caused by a full buffer.

Scenario 1 (Reference). In the model described in Sec. 1, a P4
programwhere the egress port is only set can emulate a simple FIFO
queue discipline. The buffer is only limited by its maximum size.
This scenario demonstrates how an unmanaged buffer behaves in
the presence of large number of flows; the TCP sources fill the queue,
resulting in large queueing delay. Compared to other scenarios
much more packet drops (caused by full buffer) can be observed.

Scenario 2 (PIE AQM). The PIE AQM method [3] uses a PI
controller and additional heuristics for controlling queue latency
by periodically updating the drop probability to be applied. To this
end, the P4 program uses the instantaneous queueing delay exposed
by the T4P4S switch, previous states and parameters. States are
stored in registers and the main parameters include the target delay
that is set to 5ms in our demo, the update interval determining the
1The P4 programs of the selected AQM algorithms are available at http://lakis.web.
elte.hu/aqmdemo

frequency of the drop probability updates (20 ms in our case). The
effect of AQM policy is already visible with small number of flows
(e.g. 10 flows). The experienced queueing delay meets the target
value in most of the cases during the course of the experiment (less
than the delay in FIFO case). Temporal deviations can only be seen
when new flows arrive in the system. One can also observe a fair
resource share of the bottleneck capacity among flows.

Scenario 3 (RED AQM). The RED AQM method [2] uses the
average queue size to determine the drop probability to be applied.
In contrast to PIE, this probability is calculated for each packet.
In the P4 implementation we use an exact match-action table that
maps queue sizes given in KBytes to a range of 0-255 representing
the drop probability (255 denotes probability 1.0). The RED profile
stored in this table is filled by the control plane. Note that the control
plane can update the RED profile in run-time by inserting/removing
elements into/from the given table. In the demo, the drop probability
is zero up to 3000 KBytes (minth); it starts linearly increasing to
maxp = 0.1 between 3000 and 8000 KBytes (maxth); abovemaxth
all the packets are dropped with probability 1.0. Similarly to PIE,
experienced queueing delay is much smaller, and the average queue
size mostly meetsminth . Limited number of packet loss can only
be experienced. The fairness among flows is ensured.

Though in this demo we only consider two AQM algorithms, the
proposed framework can evaluate any AQM solutions that can be
described in P4 language. The framework also supports the analysis
of how AQM methods behave under various high-speed network
traffic: 1) unresponsive and responsive flows, 2) various congestion
control algorithms and 3) other mechanisms like packet pacing.
Acknowledgement. The research has been supported by the Euro-
pean Union, co-financed by the European Social Fund (EFOP-3.6.2-
16-2017-00013). The authors also thank the support of Ericsson.
S. Laki thanks the support of the ÚNKP-18-4 New National Excel-
lence Program of the Ministry of Human Capacities.

http://lakis.web.elte.hu/aqmdemo
http://lakis.web.elte.hu/aqmdemo

Towards an AQM Evaluation Testbed with P4 and DPDK SIGCOMM ’19, August 19–23, 2019, Beijing, China

REFERENCES
[1] Pat Bosshart et al. 2014. P4: Programming protocol-independent packet processors.

ACM SIGCOMM CCR 44, 3 (2014), 87–95.
[2] Sally Floyd and Van Jacobson. 1993. Random early detection gateways for conges-

tion avoidance. IEEE/ACM Transactions on Networking (ToN) 1, 4 (1993), 397–413.

[3] Rong Pan et al. 2013. PIE: A lightweight control scheme to address the bufferbloat
problem. In IEEE HPSR. 148–155. https://doi.org/10.1109/HPSR.2013.6602305

[4] Péter Vörös et al. 2018. T4P4S: A Target-independent Compiler for Protocol-
independent Packet Processors. (2018), 1–7.

https://doi.org/10.1109/HPSR.2013.6602305

	Abstract
	1 Introduction
	2 Demo Scenarios
	References

