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Abstract—Target-independent packet processing languages
such as P4 support diverse hardware and software targets by
generalizing over the set of primitive operations available on
the target. Architecture models declare extern functions through
which functionalities of the underlying target can be accessed.
Though they can be invoked at any location in the packet
processing pipeline, their implementation details are opaque to
the data plane program. In P4, the language specification does
not define whether the extern function calls are synchronous or
asynchronous control statements — supposedly synchronous by
default. However, there are use cases when the asynchronous
invocation makes more sense, letting the main thread keep
processing packets while the extern operation is being performed
by a dedicated resource (dedicated thread, CPU core or GPU) or
an accelerator device (cryptographic co-processor or accelerator
card). This paper examines how asynchronous extern function
calls can be implemented in high-performance software data
planes defined in P4, what overheads must be taken into account
and which factors affect the price we have to pay for the
asynchronous invocation. Our evaluation reveals the trade-off
between the packet processing performance and the ratio of the
computational cost of the extern function to the overhead caused
by the asynchronous execution model.

I. INTRODUCTION

Software Defined Networking (SDN) [1] promises to pro-
vide computer networks with high degree of flexibility and
scalability by decoupling data and control planes and intro-
ducing programming abstractions into both layers. Although
control plane programmability has quite a long history in the
literature, problems of programmable and portable data planes
have started gaining notable attention in the recent years [2].
As a promising solution, specific programming languages have
emerged, enabling network developers to describe the entire
packet processing in a protocol-independent way at a high
abstraction level.

Among the several language proposals, P4 [2] has gained
the strongest community support, strengthened by members
from both industry and academia. It is a target- and protocol-
independent packet processing language which enables high-
level description of packet handling algorithms. P4 programs
can run as software on general-purpose processors or can
control a dedicated network hardware: the language has several
software implementations, it obtained some hardware imple-

mentations for NetFPGA [3] and SmartNICs, as well as it
has its custom-designed set of ASICs, Tofino, developed by
Barefoot Networks.

This paper advances software implementations of P4, in
particular, moving towards better exploitation of computational
resources and effective integration of hardware accelerators
into the P4-based packet processing pipeline. Software data
planes play a key role in modern telecommunication systems,
insomuch that in data centers most packets passing through
virtual machines are processed by software switches. The
number of hypervisor software switches in a typical data
center may exceed the number of physical switches. With the
advent of Network Function Virtualization (NFV), the network
functions traditionally implemented by dedicated hardware
are now realized as software components, promising higher
flexibility and better scalability. One of the key advantages
of software data planes is that they can be upgraded and
scaled up by running multiple instances of the same switch
program more easily compared to state-of-the-art hardware
solutions [4].

Server computers where software data planes run can be
equipped with hardware accelerators (e.g., Intel QAT, AMD
CCP, CAVIUM Octeon) and other computational resources
(such as GPUs, TPUs or other application-specific processors),
which can take their part in the packet processing pipeline
by offloading specific tasks to them. Also, for better usage
of limited CPU resources, a partition of CPU cores can
be dedicated to execute specific external functions like en-
cryption/decryption, compression/decompression, running an
artificial neural network on the GPU or any complex functions
that cannot be described in P4. Such pipeline elements, or
external functions, may appear in the middle of the control
flow, therefore efficient offloading of these external functions
requires the ability of asynchronous function invocation.

In this paper, we introduce a possible implementation of
asynchronous external functions in programmable software
data planes and extend our prior work [5] by a thorough
evaluation showing that the decision of which execution model
(synchronous or asynchronous) performs better depends on
several factors including the overhead caused by the asyn-
chronous execution, the computational cost of extern function
and the composition of the network traffic.978-1-7281-5127-4/20/$31.00 c©2020 IEEE
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The remaining part of the paper is organized as follows.
After elaborating the problem statement in Section II, we de-
fine a solution and present its proof of concept implementation
in the software data plane generated by our open-source P4
compiler called T4P4S [6] in Section III. In Section IV, a
benchmark P4 pipeline is presented, followed by the evaluation
of its performance with the proof of concept implementation.
Section V discusses the limitations and future work, and
finally, Section VI concludes the results.

II. ASYNCHRONOUS EXTERN FUNCTIONS

The P4 language handles the diversity of targets by mak-
ing itself extensible via so-called extern objects and extern
functions. P4 externs represent functionality in the architecture
model that is implemented by the given target (either in soft-
ware or hardware). Depending on the nature of the function-
ality, invocations of the extern function may be implemented
to be synchronous or asynchronous:

1) When the thread invoking the extern gets blocked for the
function execution and waits for the result, regardless of
whether the function is running in a separate thread, the
invocation is synchronous.

2) If the extern function is executed on a dedicated resource
(e.g., in a hardware accelerator card, co-processor or just
a dedicated thread) in a separate context and the packet
processing thread is not blocked, then the invocation is
asynchronous. In this case, the packet processing thread
can keep handling other packets while the operation is
being performed. This option pays off if the operation
is complex enough making it worth handed over to a
dedicated resource despite the costs of the transmission
and context switch.

Suppose that a P4 control invokes an architecture-provided
encryption functionality or any other complex operations. For
example, Langlet et al. in [7] periodically applies an artificial
neural network as an extern function on features collected by
the data plane to detect network anomalies. In these cases, the
function execution definitely takes notable CPU time, in which
it should not block the fast path. In this case the asynchronous
invocation is a good choice.

When executing extern functions asynchronously, the con-
trol flow exits the pipeline, the function gets processed by a
separate unit, and on completion the control flow is directed
back to the point where the extern call happened. From
the packet handling point of view, the processing block is
suspended at the extern call and is resumed after the function’s
return. Figure 1 depicts the workflow in an abstract way. The
packet processing pipeline contains an asynchronous extern
call, where asynchronous execution is needed. The pipeline
starts with a parser and a control block (control-a — e.g.,
ingress block), in the middle there is an asynchronous extern
call, and then another control block has to be executed. When
reaching the extern call, the packet context is saved and the
packet with the context information is forwarded to an input
queue of the dedicated processing unit (different thread or
hardware unit). After the extern call has returned, the packet is
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Fig. 1. Packet processing with an asynchronous extern call

forwarded back to the processing thread with its packet context
through a buffer. The context is restored for the packet and the
execution of the control block (control-b) is continued right
after the extern call. Note that in many cases before context
saving or after context loading additional preparation steps
may be needed, e.g., preparing the packet representation for
encryption or parsing additional headers after decryption.

At present, P4-generated software switches tend to lack of
support for asynchronous extern functions, despite that fact
that this is essential when it comes to offloading specific tasks
to hardware accelerators. We have designed and implemented
a method that allows P4 compilers to emit software switches
that employ asynchronous calls.

Packet contexts

Other packets should not affect the context (local variables,
metadata, etc.) of the offloaded, asynchronously processed
packet. In fact, all concurrently processed packets need a
separate context. Our method provides isolation and concur-
rent execution of packet handlers by making both the packet
processing loop (main loop) and the packet handler function
coroutines. Coroutines are functions whose execution can be
suspended and resumed later on, and they allow us to run our
packet handlers in manually scheduled lightweight threads.
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By using coroutines, a single OS thread can run multiple
computations concurrently. There is no free lunch: this solution
needs to manage context saving and switching.

a) Parsed representation.: The packet context, along
with a number of state variables, contains information about
the header structure of the packet. This is called the parsed
representation. Some extern operations may leave this intact
by only affecting the payload of the packet, but others may
change the header structure and therefore invalidate the parsed
representation. Somewhat similarly, extern functions may op-
erate on the raw packet as a byte array, meaning that the packet
has to be deparsed before the operation. In general, some type
of deparsing and parsing (serialization and deserialization) is
needed before and after the extern operation. Our solution
assumes that a pair of deparser and parser implementation
is supplied with the extern function call to specify how
serialization takes place.

b) Context and recirculation.: Typically, extern functions
implement operations that are part of the pipeline, the context
of the extern call has to be restored completely. On the other
hand, there are some exceptions as well: in our case study, we
examine encryption and decryption functionality. The latter
very likely happens in the beginning of the pipeline, meaning
that its context is practically empty. In such cases, when the
context is only supposed to hold the control flow location,
it may be pointless to use context saving and restoration,
it makes more sense to simply recirculate the packet to the
very beginning of the pipeline following the asynchronous
operation.

III. IMPLEMENTATION

In order to demonstrate the proposed concept, we have
modified our DPDK-based open-source P4 compiler and
software switch, called T4P4S [6], to provide experimental
support for asynchronous invocation of extern functions in
P4 programs. With the modifications, the packet processing
threads can handle multiple packets concurrently, resulting in
seamless and effective integration of computation-heavy (or
resource-heavy) extern functions into the pipeline. Concurrent
packet processing within threads is achieved by employing
asynchronous function execution by turning packet handlers
into coroutines. Note that we plan to make the source code
available in Github.

In the C program emitted by the T4P4S compiler, the
packet processing pipeline (including both the ingress and
egress controls) is implemented by a single packet handling
function. Each CPU core runs a loop to execute this handler
on each packet to be processed. Prior to the implementation
of asynchronous externs, all functions blocked the execution
of the pipeline; thus, they blocked the entire thread and the
CPU core itself, preventing it from handling other requests
while performing the extern function. In order to tackle this,
we implemented the packet handling function to be able to
spark asynchronous execution of particular extern functions
in terms of coroutines.

Coroutines

Coroutines allow us to suspend and resume packet process-
ing at asynchronous extern calls. Languages that implement
coroutines usually come with two primitives async and await,
which provide the vocabulary for turning functions into corou-
tines as well as for suspending their execution. The C language
does not support coroutines by design, but there are libraries
that implement this feature. In our C programs, we realize
coroutines with the ucontext (user thread context) module
found in the C standard library for System V1.

Concurrent execution with packet handler coroutines needs
manual scheduling, i.e. manual context switching between
the main loop and the packet handlers. In the ucontext
library there is an operation called swapcontext: it takes two
coroutine contexts, suspends the one and resumes the other.
Coroutine contexts are made with two primitives: getcontext
and makecontext.

a) Context switching: When a packet arrives, the main
loop creates and initializes a packet (sub)context (a packet
handler coroutine instance), and by swapping to the newly
created context, suspends the main loop and starts the packet
handler. Thus, the thread starts executing the pipeline for the
packet. When an asynchronous extern function gets invoked in
the pipeline, the thread swaps back to the main loop and starts
processing other packets while the extern function is being
performed. Meanwhile, it monitors a dedicated queue for the
result of the extern operation. When the result is available,
another context switch suspends the main loop and resumes
the pipeline exactly where it has been suspended by the extern
call. When the pipeline is completed and the packet handler
function reaches its end, a context switch brings the control
back to the main loop.

b) Representation switching: The inner representation of
packets in our generated switch is a structure that keeps track
of the packet data and its metadata, maintains pointers to the
headers and the fields in the byte array, and also contains
some descriptors that guide parsing and deparsing. In the
DPDK prototype implementation, when a packet is sent for an
asynchronous operation, this inner representation is serialized
to a memory buffer. This buffer, besides including the packet
data, contains the overall size of the packet, the type and
the arguments of the asynchronous operation, as well as it
remembers the identifier of the packet context. The serialized
data is put into a buffer for asynchronous operations. Once
a burst of such operations is ready for processing, they are
enqueued to the extern’s own queue in a burst.

Similarly, when the asynchronous operation is completed,
the memory buffers are dequeued from the extern’s result
queue in a burst. Then, deserialization extracts the altered
packet data, the packet size and the context identifier. An inner
representation gets rebuilt from the extracted information, and
the parser control is invoked to rebuild the header descriptions.

1In the future, this may be replaced by another implementation as ucontext
became deprecated in POSIX 6 and was removed in POSIX edition 7.
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apply {
smac.apply();
dmac.apply();
if (meta.do_extern == 1) {
@async( deparser = "MyDeparser",

parser = "MyParser")
{

extern_function();
}

}
}

Fig. 2. The control block used in the evaluation where the extern function
is either encryption or a dummy function emulating operations with various
computational costs.

c) Metadata preservation: In the prototype implementa-
tion, we assume that the metadata is not required for the extern
operation, the extern function only affects the packet data.
On the other hand, metadata has to be preserved and made
available when the packet returns from the extern function.
One could simply bring the metadata headers along with the
packet data towards the extern function, but copying unneeded
data (possibly to a separate hardware component) would take
undue data transmission. Our solution is more in line with user
contexts: we simply copy the otherwise heap-stored data into
a local variable and let the context switch handle metadata
restoration.

d) Context pools: As we discussed it already, asyn-
chronous execution takes place in user contexts, rather than
in threads. Since C does not support contexts on the language
level, allocation and deallocation of contexts has to be carried
out by the program itself. We maintain a dedicated memory
pool to provide space for contexts.

IV. EVALUATION

This section provides the preliminary results on the perfor-
mance evaluation of the proposed implementation, focusing on
three main questions: 1) What is the overhead of asynchronous
execution of an extern function? 2) What is the contribution of
context creation and context switching in the packet forward-
ing performance? 3) How does the proposed method scale with
the available CPU cores under various traffic load?

The measurements have been carried out in our local testbed
consisting of two identical nodes (AMD Ryzen Threadripper
1900X 8C/16T 3.8 GHz, 128 GB RAM): a traffic generator
node using DPDK’s Pktgen tool to generate test traffic and
a P4 switch node executing the proposed implementation.
Each one is equipped with a 1 Gbps NIC for management
purposes and a dual port 10 Gbps NIC (Intel 82599ES) for the
measurements. On both machines, the two 10 Gbps interfaces
are used with Intel DPDK drivers.

For the performance analysis we have implemented a bench-
mark P4 pipeline that is based on a simple L2-forwarding
program consisting of two exact tables, smac and dmac
filled with the source and the destination MAC addresses of

flows in the generated test traffic. Figure 2 presents the apply
block of the ingress control of the benchmark P4 program.
For technical reasons each asynchronous function has its own
annotated internal block. Annotations are used to define which
deparsing method shall be applied before and which parsing
method after the execution of the asynchronous extern. In our
example, the original parse and deparse methods of the L2
forwarding can be applied by both asynchronous calls. Note
that some methods like encryption and decryption may require
the serialization of the packet content in advance, but other
extern functions may work without these steps, thus deparse
and parse parameters can be left undefined.

The extern operation is called after applying the dmac table.
We use a dummy extern function that can emulate operations
with arbitrary computational costs expressed in CPU clock
cycles. The extern function can be applied to all the packets
flowing through our switch program or only to a portion of
the traffic. In this paper, 4 extern percentage settings have
been examined: 10%, 20%, 50% and 100% of the packets
trigger the call of the extern function at the end of the pipeline
(meta.do_extern is set in Fig. 2), while the remaining
packets end the pipeline after applying table dmac. Note that
this selection is applied on the packets received by one of the
packet processing threads and are not affected by the packets
dropped outside the software switch (e.g., by the NIC). All
the settings have been evaluated with both asynchronous and
synchronous (without @async annotation) executions. In both
cases, the extern function is running on a separate CPU core
emulating the dedicated resource that is responsible for the
specific extern operation.

Fig. 3 depicts the examined scenarios using the dummy
extern function with variable computational costs from 50
CPU clock cycles to 10000. Note that the 50 and 10000 CPU
clock cycles correspond to approx. 13ns and 2.6µs delays,
resp. The test traffic has been generated at line rate, consisting
of 10 flows with packets of size 64 bytes. The figure shows
the single CPU core performance where the main packet
processing pipeline runs on a single isolated CPU core and
another dedicated core is used for serving the extern calls.
One can observe that as the extern call percentage decreases,
not surprisingly the resulted packet forwarding rate increases,
since less packets have to go through the costly extern opera-
tion. Note that the single core forwarding performance of the
benchmark pipeline without the extern call (0% extern call
percentage) is approx. 11 MPPS. One can also see that the
most important factor in the decision of which execution model
performs better is the computational cost of the extern opera-
tion. Synchronous execution clearly outperforms asynchronous
one if the computation cost of the extern function is small,
e.g., up to 2000-3000 clock cycles in our case. As a given
complexity in the extern function is reached, the overhead
caused by the asynchronous execution can be compensated
and thus higher throughput can be reached. The right plot in
Fig. 3 shows that the performance of asynchronous execution
crosses the synchronous ones at 2000 clock cycles and after
this point the asynchronous execution is better since the extern
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Fig. 3. Performance of synchronous and asynchronous execution models for extern functions with various computational costs. The extern operation is applied
to 10%, 20%, 50% or 100% of the incoming traffic.
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Fig. 4. Drop rate at the extern buffer. The buffer can store 1000 packets. If
it is exceeded, the packet is dropped without context creation.

operation becomes a bottleneck that in asynchronous case only
affects the thread executing the extern function instead of the
main packet processing thread. Though our proof of concept
prototype based on ucontext library is not optimal, we expect
similar phenomena with more optimal implementations where
asynchronous way could cross the synchronous one at smaller
computational costs.

Fig. 4 shows packet drops caused by the full extern buffer.
In our implementation the extern buffer can store at most 1000
packets, if it is filled packets are dropped at the extern call. For
small number of clock cycles, the extern buffer causes almost
zero packet drop, but above 2000 CPU cycles (approx. 0.5µs)
in the 50% and 100% cases the drop rate increases, indicating
that packets started accumulating in the buffer. Comparing the
cases of 50% and 100% extern percentages drop rate starts
increasing earlier with the former — all the packets call the
extern operation and thus the overhead of context creation are
very high. The time needed for processing a single packet is
significantly increased, and thus packets are dropped outside
the switch program by the NIC.

In Fig. 5 we show how the performance scales with the
number of CPU cores. Note that the extern function still runs
on a single dedicated core and only the number of main
packet processing threads is changed. In this scenario, we
consider 10% extern percentage and three extern functions: 1)
Encryption that uses the OpenSSL driver of DPDK (instead

of our dummy extern function) and 2) dummy extern function
with computational cost of 3000 and 3) 10000 clock cycles.
One can observe that both synchronous and asynchronous
executions scales well with the number of CPU cores and
in case of encryption the overhead caused by the extern calls
is much larger than the cost of the crypto operation.

Fig. 6 depicts a scenario where the software switch running
the benchmark pipeline is not flooded with the test traffic. The
sending rate in the traffic generator is set to the maximum
where the observed packet drop rate is almost zero (similarly
to RFC2544 [8]). The dummy extern with a 5000 clock cycles
(approx. 1.3µs) cost is applied with different number of CPU
cores and extern percentages. In accordance with Fig. 3 the
asynchronous execution with this computational complexity of
the extern operation clearly outperforms the synchronous one.
The numbers are in accordance with our previous ”flooding-
based” measurements. One can also observe that the scalability
with the number of CPU cores is also affected by the traffic’s
extern percentage which is caused by the single dedicated
resource for the extern execution. For at least 20% extern
ratio the performance of synchronous operation with two CPU
cores can be approached by the asynchronous results with a
single CPU core. Note that the behaviour of the synchronous
execution with two CPU cores are very similar to the single
core asynchronous case. As the percentage increases the single
resource handling the extern calls starts limiting the overall
performance.

V. DISCUSSION

Though the proposed method makes the asynchronous exe-
cution of P4 extern functions possible, there are a number of
open issues not or only partially managed in our solution.
1) Some asynchronous operations e.g., encryption, compres-
sion may require the partial serialization of packet headers
while reparsing may be needed for others like decryption
or decompression. Our benchmark P4 program uses different
internal blocks for every call of asynchronous extern functions
where blocks are annotated with the execution mode and
further parameters. Using this technique all the necessary
information needed for the implementation of asynchronous
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calls can be provided to the P4 compiler, but language support
for asynchronous operations including hardware acceleration
in P4 would be much cleaner.
2) In our early prototype context handling is based on the
System V Context C (ucontext) library that saves or reloads
the whole stack of the generated switch program at given
checkpoints. For demonstrating the concept it works, but it
results in too large overhead reducing the packet processing
performance. As shown in Section IV, the primacy of asyn-
chronous execution mostly determined by the ratio of the over-
head caused by the context management and the computational
complexity of the extern function. For extern functions with
very low costs, asynchronous execution may results in about
33%-50% percent of the achievable maximum throughput of
the synchronous operation, depending on the traffic mix. Our
measurements has shown that context creation has the biggest
impact on the performance and context switching has much
lower cost. One of the reasons is that the packet context in the
generated switch program is much larger than what is really
needed. According to the P4 code, the packet context can
be defined more precisely, limiting its size and thus context
handling can be fasten by many factors.
3) The proposed approach can be extended in a straightfor-
ward way to support not only asynchronous extern functions
but asynchronous execution of P4 instructions or blocks of
instructions (e.g. complete controls). This could be important if
distribution of computational resources needs to be optimized.
4) Our analysis envisions that if the cost of an extern operation
can be predicted, the price of using asynchronous or syn-

chronous execution and the effect on the overall performance
may also be modelled. Then an automated decision on the
execution model to be used could be made to optimize the
operation of future software data planes.

VI. CONCLUSION

Efficient execution of computationally expensive functions
requires the ability of asynchronous function invocation. This
paper presents a solution to support asynchronous extern
functions by using context saving and switching. The method
is implemented using the DPDK-based T4P4S compiler and
software switch. Illustrating the applicability of the proposed
approach a benchmark P4 program has been created and
measurements are presented to proof the concept and analyze
its advantages and disadvantages. Our evaluation shows that
the decision of which execution model (asynchronous or
synchronous) performs better relies on different factors. The
extra overhead caused by the asynchronous execution (e.g.,
context creation and switching), the computational complexity
of the extern operation and the ratio of these to each other
play the most important roles in the decision. The paper also
discusses the main open issues implying room for possible
future work and improvements.
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