
2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)

Asynchronous Extern Functions in Programmable
Software Data Planes

1st Dániel Horpácsi
Eötvös Loránd University

Budapest, Hungary
danielh@elte.hu

2nd Sándor Laki
Eötvös Loránd University

Budapest, Hungary
vopraai@elte.hu

3rd Péter Vörös
Eötvös Loránd University

Budapest, Hungary
matej@elte.hu

4th Máté Tejfel
Eötvös Loránd University

Budapest, Hungary
lakis@elte.hu

5th Gergely Pongrácz
Ericsson Research

Budapest, Hungary
gergely.pongracz@ericsson.com

6th László Molnár
Ericsson Research

Budapest, Hungary
laszlo.molnar@ericsson.com

Abstract—Target-independent packet processing languages
support diverse hardware and software targets by generalizing
over the set of primitive operations (extern-functions) available
on the target. In P4, the language specification does not specify
whether the invocation of an extern function is synchronous or
asynchronous — supposedly synchronous by default. However, in
some use cases, it makes more sense to invoke such functions in
an asynchronous way and let the thread keep processing packets
while the extern operation is being performed by a dedicated
resource or accelerator device. In this paper, we propose a method
for transparent description and efficient implementation of asyn-
chronous extern function calls in P4-programmable software data
planes. Our DPDK-based early prototype relies on the concept of
coroutines used for saving packet contexts and manual switching
between them. The overhead of the proposed solution is analyzed
with a packet encryption case study.

Index Terms—P4, Asynchronous packet processing, Software
data plane

I. INTRODUCTION

P4 [1] is a target- and protocol-independent packet process-
ing language which enables high-level description of packet
handling algorithms. P4 programs can run as software on
general-purpose processors or can control a dedicated network
hardware. This paper focuses on software data planes that play
a key role in modern telecommunication systems, insomuch
that in data centers most packets passing through virtual
machines are processed by software switches.

Existing solutions usually carry out the packet processing
entirely on CPU cores, according to a run to completion
execution model, leaving room for further optimization regard-
ing scheduling and offloading. The server computers hosting
these software data planes can be equipped with hardware
accelerators (e.g. Intel QAT, AMD CCP, CAVIUM Octeon)
and other specific computational resources (such as GPUs or
application-specific processors), which can take their part in
the packet processing pipeline by offloading specific tasks to

The authors thank the support of the European Union, co-financed by the
European Social Fund (EFOP-3.6.2-16-2017-00013) and Ericsson Hungary
Ltd.

them. Also, for better usage of limited CPU resources, a par-
tition of CPU cores can be dedicated to execute specific parts
of the pipeline, e.g., external functions (extern functions) like
encryption/decryption, compression or checksum calculation.
Such pipeline elements, or external functions, may appear in
the middle of the control flow, therefore efficient offloading of
these external functions requires the ability of asynchronous
function invocation.

This paper discusses a proof-of-concept implementation
of asynchronous extern functions in the P4-programmable
software data plane called T4P4S [2], using the concept of
coroutines.

II. ASYNCHRONOUS EXTERN FUNCTIONS

Concept. The P4 language handles the diversity of targets
by making itself extensible via so-called extern objects and
extern functions. Externs represent functionality in the ar-
chitecture model that is implemented by the given target
(either in software or hardware). Depending on the nature of
the functionality, invocations of an extern function may be
implemented to be synchronous or asynchronous. In case of
asynchronous invocation the extern function is executed on a
dedicated resource (e.g., in a hardware accelerator card, co-
processor or just a dedicated thread) in a separate context and
the packet processing thread is not blocked for the function
execution, it can keep handling other packets while the opera-
tion is being performed. This option pays off if the operation
is complex enough making it worth handed over to a dedicated
resource despite the costs of the transmission and context
switch. Suppose that a P4 control invokes an architecture-
provided encryption functionality (e.g., accelerated by a co-
processor) whose execution takes notable CPU time in which
it should not block the fast path. In this case the asynchronous
invocation is the good choice.

When executing extern functions asynchronously, the con-
trol flow exits the pipeline, the function gets processed by a
separate unit, and on completion the control flow is directed
back to the point where the extern call happened. From

978-1-7281-4387-3/19/$31.00 © 2019 IEEE

Authorized licensed use limited to: Eotvos Lorand University Budapest. Downloaded on October 27,2022 at 10:55:02 UTC from IEEE Xplore. Restrictions apply.

the packet handling point of view, the processing block is
suspended on the extern call and is resumed after the function’s
return. To support this, when the execution reaches the extern
call, the packet context is saved and the packet with the context
information is forwarded to an input queue of the dedicated
processing unit (different thread or hardware unit). All concur-
rently processed packets need a separate context storing local
variables, metadata, raw and parsed packet representations,
etc. Note that other packets should not affect the context
of the offloaded, asynchronously processed packet. After the
extern call has returned, the packet is forwarded back to the
processing thread with its packet context through a buffer. The
context is restored for the packet and the execution of the
original control block is continued right after the asynchronous
extern call. Note that in many cases before context saving
or after context loading additional preparation steps may be
needed, e.g. preparing the packet representation for encryption
or parsing additional headers after decryption. Though the
support of asynchronous invocation increases the complexity
of the P4 compiler and the generated software data plane, the
benefits are obvious when it comes to offloading specific tasks
to hardware accelerators.
Prototype Implementation. In order to demonstrate the pro-
posed concept, we have modified our DPDK-based open-
source P4 compiler and software switch, called T4P4S [2],
to provide experimental support for asynchronous invocation
of extern functions in P4 programs. With the modifications,
the packet processing threads can handle multiple packets
concurrently. Concurrent packet processing within threads is
achieved by employing asynchronous function execution by
turning packet handlers into coroutines allowing us to suspend
and resume packet processing at asynchronous extern calls. In
our prototype implementation, coroutines are realized with the
ucontext (user thread context) module in C library System V.

To illustrate the applicability of the method and to carry
out performance measurements we have created a simple P4
program as a benchmarking example that extends a sim-
ple L2 forwarding example with two asynchronous extern
calls encrypt and decrypt added to the v1model P4
architecture. They are responsible for encrypting and de-
crypting a part of the serialized packet resp., implemented
by DPDK’s OpenSSL-based Cryptography PMD. The ex-
tern functions are called after the original L2 forwarding
block applying two exact-matching tables smac and dmac.
To denote where asynchronous invocation shall be used we
embedded the extern call into an annotated block in the
P4 program: @async(deparse=..., parser=...)
{ ... }. Annotation parameters are used to define which
deparsing method shall be applied before and which parsing
method after the execution of the asynchronous extern. In
our example, the original parse and deparse methods of the
L2 forwarding can be applied by both asynchronous calls.
Note that encryption and decryption methods require the
serialization of the packet content in advance, but other extern
functions may work without these steps, thus deparse and parse
parameters can be left undefined.

1 2 3 4
#CPU Cores

0

10

M
P
P
S No Extern

Empty Extern

100% Encrypt

100% Enc+Dec

Fig. 1. Performance w/wo async. extern calls

The measurements have been carried out in our local testbed
consisting of two identical nodes (AMD Ryzen 1900X 8C/16T
3.8 GHz, 128 GB RAM): a traffic generator using DPDK’s Pk-
tgen tool to generate test traffic and a P4 switch executing the
proposed implementation, interconnected with two 10 Gbps
links. Figure 1 depicts the overhead of asynchronous extern
calls including context creation and context switching steps.
The curve ”No Extern” illustrates the baseline performance
of a simple L2 forwarding without asynchronous calls and
context management (11 MPPS). In the ”Empty Extern” case,
the P4 switch creates the packet contexts and after the L2 block
calls an empty asynchronous extern function. The main pur-
pose of this measurement is to quantify the overhead of context
creation and switching. One can see significant performance
drop compared to our baseline measurements (4 MPPS with
4 CPU cores). The ”100% Encrypt” case illustrates when an
asynchronous extern operation encrypting the packet payload
(using OpenSSL DPDK driver) is called, while in the ”100%
Enc+Dec” case two asynchronous extern operations are called:
first encrypting and then decrypting the payload, resulting in
multiple context switching.Our main finding is that context
creation of the ucontext library is very expensive, causing
significant decrease in packet processing performance. After
the context is created, context switching has non-significant
costs. The two extern functions are currently implemented by
OpenSSL whose overhead is also visible in the figure.
Discussion. Though the proposed method makes the ap-
plication of asynchronous extern functions possible in P4
programs, there are a number of open issues not or only
partially managed in our solution. 1) Some asynchronous
operations e.g. encryption, compression may require the partial
serialization of packet headers while reparsing may be needed
for others like decryption or decompression. 2) In our early
prototype context handling is based on the ucontext library
that saves or reloads the whole stack of the generated switch
program at given checkpoints, resulting in too large overhead
for practical usage. 3) The proposed approach can be extend
in a straightforward way to support not only asynchronous
extern functions but asynchronous execution of P4 instructions
or blocks of instructions (e.g. complete controls).

REFERENCES

[1] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Computer Communication Review vol. 44,
issue 3, 8795, 2014.

[2] P. Vörös et al., “T4P4S: A Target-independent Compiler for Protocol-
independent Packet Processors,” In Proceedings of IEEE HPSR 2018.
2018.

Authorized licensed use limited to: Eotvos Lorand University Budapest. Downloaded on October 27,2022 at 10:55:02 UTC from IEEE Xplore. Restrictions apply.

